Lecture 13: Basic Concepts of Wavefront Reconstruction

Astro 289

Claire Max February 25, 2016

Based on slides by Marcos van Dam and Lisa Poyneer CfAO Summer School

Outline

- System matrix, H: from actuators to centroids s = Ha
- Reconstructor, R: from centroids to actuators a = Rs
- Hardware

Wavefront sensor

System matrix generation

• System matrix describes how a signal applied to the actuators, *a*, affects the WFS centroids, *s*.

• Can be calculated theoretically or, preferably, measured experimentally

Experimental system matrix

- Poke one actuator at a time in the positive and negative directions and record the WFS centroids
- Set WFS centroid values from subapertures far away from the actuators to 0

Inverting the system matrix

- We have the system matrix s = Ha
- We need a reconstructor matrix to convert from centroids to actuator voltages a = Rs

Ha = s $H^{T}Ha = H^{T}s$ $a = (H^{T}H)^{-1}H^{T}s$ Least-squares reconstructor R

Page 12

- Least squares reconstructor is $(H^T H)^{-1} H^T$
- Minimizes $(s-Ha)^2$
- But $\overline{H^T H}$ is not invertible because some modes are invisible!
- Two invisible modes are piston and waffle

DM Voltage Control		ſ	<u> </u>	DM Voltage Control		
	Save to file Load from file Map Wyko Refresh voltages Clear Apply as orig. Load recon WYKO				Save to file Load from file Map Wyko Refresh voltages Clear Apply as orig. Load recon	
	Dismiss				Dismiss	
Coarse	Volts 1.00		Coarse		Volts X -0,50	
Fine	Actuator 174		Fine		Actuator 173	
June 1			Ymme			

Singular value decomposition (SVD)

- The SVD reconstructor is found by rejecting small singular values of *H*.
- Write $H = U\Lambda V^T$

 λ_i are the eigenvalues of $H^T H$

• The pseudo inverse is $H^+ = V \Lambda^{-1} U^T$

Singular value decomposition

• The pseudo inverse is $H^+ = V \Lambda^{-1} U^T$

• Replace all the λ_i^{-1} with 0 for small values of λ_i

Singular value decomposition

• Example: Keck Observatory

Noise propagation

- Suppose we only have centroid noise in the system with variance σ^2
- Variance of actuator commands is: Var(a) = Var(Rs) $= E[(Rs)^{2}] - (E[(Rs)])^{2}$ $= E[(Rs)^{2}]$ $= |R|^{2} E[s^{2}]$ $= |R|^{2} \sigma^{2}$

- For well-conditioned *H* matrices, we can penalize piston, *p*, and waffle, *w*: $p = [1,1,1,1,1,1,...]^T$ Invertible $w = [1,-1,1,-1,1,...]^T$
 - $R = (H^T H + pp^T + ww^T)^{-1} H^T$

• Minimizes $(s - Ha)^2 + (p^T a)^2 + (w^T a)^2$

Choose the actuator voltages that best cancel the measured centroids

• For well-conditioned *H* matrices, we can penalize piston, *p*, and waffle, *w*: $p = [1,1,1,1,1,1,...]^{T}$ $w = [1,-1,1,-1,1,...]^{T}$ $R = (H^{T}H + pp^{T} + ww^{T})^{-1}H^{T}$

• Minimizes $(s - Ha)^2 + (p^T a)^2 + (w^T a)^2$

Choose the actuator voltages such that there is no piston

• For well-conditioned *H* matrices, we can penalize piston, *p*, and waffle, *w*: $p = [1,1,1,1,1,1,...]^{T}$ $w = [1,-1,1,-1,1,...]^{T}$ $R = (H^{T}H + pp^{T} + ww^{T})^{-1}H^{T}$

• Minimizes $(s - Ha)^2 + (p^T a)^2 + (w^T a)^2$

Choose the actuator voltages such that there is no waffle

- Penalize waffle in the inversion:
 - 1. Inverse covariance matrix of Kolmogorov turbulence or
 - 2. Waffle penalization matrix

Slaved actuators

- Some actuators are located outside the pupil and do not directly affect the wavefront
- They are often "slaved" to the average value of its neighbors

Slaved to average value of its neighbors

Modal reconstructors

- Can choose to only reconstruct certain modes
- Avoids reconstructing unwanted modes (e.g., waffle)

Zernike modes

Modal reconstructors

 $Z = [z_1, z_2, z_3, ...]$ Zernike modes HZ Centroids measured by applying Zernike modes to the DM $R = Z[(HZ)^T (HZ)]^{-1} (HZ)^T$ Zernike reconstructor

Hardware approaches

- Systems until recently could use fast CPUs
- For advanced AO systems, need to use more processors and be able to split the problem into parallel blocks
- GPU Graphics Processing Unit
- DSP Digital Signal Processor
- FPGA Field Programmable Gate Array (lots and lots of logic gates)

